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Solution behavior of polyethylene oxide in water as a function of temperature and pressure
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A model of the solution behavior for hydrosoluble polymHsased on a model of Matsuyama and Tanaka,
Phys. Rev. Lett65, 341(1990] is introduced that accounts for hydrogen bonding of solvent molecules onto
polymer chains. In the limit of small volume fraction of H-bonded solvent molecules, the resulting free energy
has the standard Flory-Huggins form with a good solvent contribution to the effegtbarameter coming
from the fraction of solvents H bonded to the chain. This simple theory is capable of semiquantitatively
explaining the experimental temperature-concentrafiegp) and temperature-pressuré-P) phase diagrams
of polyethylene oxide in watefS1063-651X96)04712-5

PACS numbg(s): 64.70.Ja, 64.75:9g, 81.30.Dz, 82.30.Nr

I. INTRODUCTION Theoretical worK1,19,2Q on this subject has been sparse
compared to that of experiment. Below we present a brief
Understanding the behavior of hydrosoluble polymers igeview of the phenomenological models used to explain the
of biological and commercial intereg2—6]. There are gen- behavior of hydrosoluble polymers and the open questions
erally two mechanisms by which hydrocarbon polymers bethese works have generated.
come soluble in water: (i) attached polar groups on the = Matsuyama and TanakdT) [1] showed that formation
polymers andii) hydrogen bonding between the chain andof hydration complexes along the polymer chain produces a
water; the latter is the subject of this paper. The most studieghase diagram that is consistent with the observed experi-
hydrosoluble polymer is polyethylene oxid®EO [7,8],  mental phase diagram of PEO in waff&B,21]. They assume
which belongs to the polyepoxide groygeneral formula that the solvent can stickvia H bonding to the polymer,
[(CH,),0l,, with n=2). Devanand and Selser's study of thereby defining a system af clusters(i.e., m solvent mol-
PEO in watel{9] reveals an unusually large second osmoticecules attached to a polymemnd free solvent. MT allow the
virial coefficientA, and prefactora in the scaling relation number of attached solvents fluctuateand treat eachm
RgzaNo'58 [10], indicating that water is an extremely good cluster as a separate chemical species. Moreover, they ex-
solvent for PEO. The solubility of PEO in water is attributed plicitly assume that in the absence of H bonding the polymer
to hydrogen bonding between water molecules and the oxyis in a poor solven{i.e., xy>0.5). They find that the good
gen on the polymer backbone. solvent quality of hydrosoluble polymers can be explained
A common feature in binary liquid mixtures that exhibit solely by the mechanism of binding the solvent to the chain.
hydrogen bonding between the two compongetg., nico-  Furthermore, they show that the average number of attached
tine plus water [11]) is closed-loop temperature- solvents decreases with temperature, thereby exposing the
concentration phase boundar{dg]. The PEO temperature- polymer to a poor solvent at high enough temperatures.
concentration phase diagram exhibits these closed-loopowever, keeping track of the population of the varions
phase boundaridd3—-16 that are sensitive to the molecular clusters leads to a rather involved formalism in which the
weight of the chains. In fact, these closed loops shrink as aixing free energy is not explicitly written as a function of
function of decreasing molecular weight to a point atthe monomer volume fractioh. Moreover, they do not ad-
M,~2140[13]. dress whether the solvent quality of hydrosoluble polymers
Many polymers that are soluble in organic solvents haves dominated by the average number of H-bonded solvents or
critical temperatures that are weakly sensitive to pressures ughether fluctuation effects play a significant role.
to 20 kbar[17]. In contrast, Cook, King, and Peiff¢8] Focusing on the formation of PEO aggregaf2g] de-
found that increasing pressure4 kbar dramatically lowers tected by light scattering26], de Genne$19] suggested that
the lower critical solution temperature.CST) of PEO in it might be possible to maintain the simplicity of the original
water to room temperature. Thus the picture that has$-lory-Huggins theory for these materials. These aggregates
emerged is that under ambient conditions, H bonding of waare detected at temperatures below the LCST in a region of
ter to the chain results in extremely good solvent propertiesthe T-¢ plane where the measured second virial coefficient is
An increase of temperature or pressure decreases the solvgmasitive (i.e., repulsive monomer-monomer interactiprae
quality through the reduction of hydrogen bonds, therebyGennes includes attractii@gher virial coefficients to de-
inducing phase separation. scribe potential oligomer formation and goes on to show that
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this leads to a novel phase separation below a temperatufeee solvent with volume fractiog,, the mixing free energy
0~70 °C, which is 30 °C below the LCST, where dilute per site is

swollencoils coexist with a dense polymer phase., ag-

gregates However, the microscopic mechanism by which N

higher negative virial coefficients are achieved is not dis-F _ D Dm+1 | td

cussed. We note that the model introduced by MT containsT <, N+m Ném+1t Po Ndo

the feature that the good solvent quality depends on the frac-

tion of H-bonded solvents, which decreases with increasing N dmi1 AFq f1

monomer concentration. Thus there may be a formal connec-  + 2.y |M T N R Txp(1=¢).
tion between de Gennes'’s theory and that of MT; however, m=0 Y

this has not been explored. )

In a previous work, wg20] studied the single-chain be-
havior of hydrosoluble polymers. We assumed that H bondThe first two terms constitute the contribution to the entropy
ing of water to monomer results in a good solvent contribu-of mixing coming from the translational degrees of freedom
tion to the second virial coefficientvy(¢,T,P)>0. of m clusters and a free solvent. The third term constitutes
Furthermore, in a dense monomer environment, we assumefle free-energy change due to forming clusters, where
monomer-monomer contacts are capable of suppressing NF,=A&,—TAS, is the free-energy difference between a
bonding between the solvent and polymer. This leads to &ound and free solvent and H[(f—m)!m!] is the entropy
concentration-dependent second virial coefficient where inarising from the number of unique configurations thaat-
creasing the monomer concentration reduces solvent qualitached solvents can assume on a chain fidonding sites.
similar to de Gennes theof9]. Addingvy(¢,T,P) to the  For simplicity, we assume that each monomer unit is capable
Flory single-chain free energy leads to a barrier between thef forming only one hydrogen borde., f =N atP=0[29]).
swollen and collapsed states, while the standard Flory freghe last term is the “bare” monomer solvent interaction
energy has only a single minimum. By simply expandingwith a poor solventy (>0.5 parameter, which accounts for
vy(¢,T,P) to linear order in pressur®, our single-chain the hard-core, van der Waals, and “hydrophobic” interac-
theory captured the experiment®, versus the pressure tions. In the temperature range of interest, we simply assume
curve well for PEO in watef18]. However, the molecular (T)=A-BT. Finally, the incompressibility condition for
weight dependence of the experimental critical pressurehis system is given by
could not be explained by this theory.

In this work, we start with a free energy that allows for
attachment of solvent molecules onto polymer chains via hy-
drogen bonding. We derive the distribution of chains with
attached solvents and show that the fluctuations in the frac-
tion of attached solvents are1/y/N, whereN is the number We find the distribution ofn clusters by minimizing1)
of monomers on a chain. For typical polymers,//is  with respect tog,,., subject to the constraint
small. We use this fact to arrive at a mean-field model in
which we assume that all polymers have sa@nenumber of N
attached solvents1. We explicitly are able to write the free 2 b
energy as a function of monomer concentration and find that o Mt
it is well approximated by the Flory-Huggins form in the
neighborhood of the coexistence curve. Furthermore, wavhere ¢ is the volume fraction of monomers. We find
show that higher virial coefficients are albsitive hence our
model does not describe aggregate formation. Moreover, we

N
mE:O bmirt Po=1. )

N
N+m

¢, ()

introduce a model for the pressure dependenaa based on m+1 =ex;{ m( INgo+1— ﬁ +f Inf—m Inm

the idea of a preferred H-bonding volurf@/]. We go on to C1 T

show that our generalized Flory-Huggins free energy is ca-

pable of explaining the experimentatP-¢ phase diagram —(f—m)ln(f—m)}, (4)

of PEO in water. More specifically, our simple modplfits

the experimental critical temperature verddg, data well,

including the double critical point a¥,,~2140, (ii) semi- ~Wherecy, 1= ¢y.1/(N+m) is the concentration of chains
quantitatively captures the experimentBi¢ coexistence With m attached solvents. As a function of, Cy,, 4 is well
curves(iii ) fits the P-T phase diagram to within experimen- approximated by a Gaussian peaked at

tal error, and(iv) semiquantitatively agrees with the cloud

point pressure versud,, curve. Finally, our theory predicts m AT) o

reentrant behavior in thB-T phase diagram, which has re- =, (5)
cently been observed in the p@N+vinyl-2-pyrrolidone in fAMMgotl

water systenj28]. where\(T)=exd1-AF,/T], of width

Il. GENERALIZED FLORY-HUGGINS FREE ENERGY

Assuming we have a solution of clusters(i.e., a poly- A_m: /} E) 1_@) ©6)
mer andm attached solventsvith volume fractiong,,., ; and f fof f '
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From(6), we see thahm/m=\/(1/m)(1—m/f ). Unless the using Egs.(8)—(10) to arrive at the final form of the mean-
temperature is extremely high or the volume fraction of sol-field free energywithout additional approximations

vent very low, m~f=N and Am/m~1/J/N. For typical
polymers, 1IN<1; thus fluctuations in the number of
H-bonded solvents is negligible and the distribution shown In ¢+ (1—P)IN(1— )+ xPp(1— )

in (4) is sharply peaked an.

We note that Eq(1) resembles the free energy of living m 1 f fom
polymers[30]. In the case of living polymers, the size dis- +(1—¢)In( 1-—¢p——|+— ¢ |n(__:j
tribution of aggregates is usually axponentiafunction of N"1-¢/ N N N
the number of aggregating molecules, whereas, in our case, o
we find a sharply peaked Gaussian. The essential difference +— . (11)
between living and hydrosoluble polymers is that Heek- N
boneof the hydrosoluble polymers acts as a source-df ) ) _
bonding sites and gives rise to a mixing entropy of bonded he first three terms constltgte the standard Flory-Huggins
and unbonded sites along the chain. This “bond” entropy,free energyf31] for a polymer in poor splvent. The last three
which is given by the last three terms within the exponential€'ms areé the good solvent contribution to the free energy
of Eq. (4), is sharply peaked for largs at m* =N/2, where due to the volume fraction of solventm{N)¢ being H
the number of configurations is maximum. The competitionPonded to the polymer. o
between the local free energy change due to bond formation We may express/N and, therebyF explicitly as func-
and the bond entropy simply shifts this sharp peak fratn ~ tions .of temperature and volume fraction of monomer by
to m. We will now use the fact that the fluctuations are cOmbining Egs(9) and (10):
insignificant and simplify(1) by assumingeverypolymer has

—H| M
Zle

the samenumber of bound solvents. o f
The mixing free energy per site for a solution with — C(¢)— \/C(¢)2—4£(T)2 N 219
clusters,(i.e., everypolymer having exactlyn attached sol- T: . (12
ventg and a free solvent molecules (iseglecting terms lin- N 2L(T) ¢
ear in¢)
where
F ¢m ™ w1 | —AF
T NN N g | T :
m m m C(¢):1+£(T)(N—1)d), 13
fl
—In ———|+ 1-¢). 7
T X =) ) -
e L= "7 (14
Because the number of chains trivially equals the number of NT)+1
polymers withm bound solvents(3) simplifies to
and
Pmi1 P
Nr—nl—ﬁ’n—— N ®) Tm
AMT)=expr ?—1 , (15
Furthermore, the incompressibility condition E) be-
comes which is equivalent to the expression found by §I]. We

have reparametrized the statistical weight for forming a H
m bond along the chaik(T). In particular, we have introduced
GPo=1—prm1=1— ( 1+ %j ®, (9  the parametef,,,, which is defined byC(T,,)=3. From Egs.
(12) and (13), we see that forp—0 (i.e., dilute limit), m/
N—L(T). Thus, similar to the definition of the helix-coil

Minimizing F [Eq. (7)] with respect tam, we recover the transition[32] in which the helix is defined to “melt” when

result for the average equilibrium number of bound solventé,he fr_aCt,',On of helical segments is equal %pwe define a
m/f, shown in Eq.(5), which we rewrite as melting” temperature T, where the fraction of attached

solvents(for an isolated cojlis reduced tg;. We may write

T, in terms of the energy differenc®, and entropy differ-

1—1)—ﬂ—0 (10 ence AS, between a bound and unbound solvé88] as

m T AE=T(ASy+1). Finally, r is defined by the ratio
r=—A&YT,,. Equations(11) and (12) constitute a mean-

We see that the equilibrium number of bound solvents idield solution theory of polymers that associate with a solvent

determined by balancing the loss in bulk translational enwhere fluctuations in the fraction of attached solvent have

tropy, the gain in configurational entropy along the chain,been neglected.

and the change in the local free energy of the solvent mol- Using Eqs(11) and(12) (with f=N), we may expand the

ecule due to bond formation. We may simplify E§) by  free energy in smali, giving

where (m/N) ¢ is the volume fraction of bound solvent.

INgp+1+In
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F ¢ L o1 a1 g temperature. This resembles the physics of simple adsorbing
TN N dtavdtawe Tt auete- (16 surfaceg30], where polymer in this case acts as the effective
surface.

where the secon84], third, and fourth virial coefficients are
given by 1. EFFECT OF PRESSURE ON HYDROGEN BONDING

Finally, we will also be interested in understanding the
v=1-2x+L(2+L), (17)  experimentall-P phase diagram of PEO in watgt8]. To
understand the effect of pressure on the H bonds formed
— 3 along the chain, we use a simple, phenomenological model
w=1+L5(4+3L), (18) of water introduced by Poolet al.[27]. They assume that H
and bonds have a preferred length, which leads to a preferred
volume for the formation of H bond%/,5. The application
of pressurgV<Vg) or tension(V>Vg) introduces alo-
bal geometric constraint, which does not allow all H bonds
to form at the preferred volume, thereby suppressing H
bonding. FoV# Vg, they assume only a fractidi of the
total bonds form at the optimal local H-bonding volume and
1-f’ are found at an unfavorable voluniee., “broken
bonds”). They assume thdt is given by

u=2+L3(—8—6L+24L£%+20L3), (19

respectively. In this work, we will be interested in under-
standing the experimentat¢ phase diagram of PEO in wa-
ter[13-16. As mentioned abovey is the bare poor solvent
interaction parameter; thus, from E(L7) we see that the
good solvent contribution to the second virial coefficient
comes from the third ternf(2+£). Within the context of
our theory, we expect the polymer to be in a poor solvent f’=exp|’ B
aroundT~T,,, namely, when the fraction of H bonds begin
to melt off the chair{35]. Indeed, MT findT ;=398 ° K for _ o )
PEO in water, which is around the LCST of this system.Wherecs’ characterizes the width i beyond which only a
Thus we expect(T)=<3 in the neighborhood of the coexist- small number of H bonds are found at the optimum local
ence curve and the contribution of H bonding on all virial Volume.
coefficients beyond second order to be small. At high tem- In the case of hydrosoluble polymers, we assume that the
peratures(i.e., T=T,,), the free energfEq. (11)], is well ~ Water molecules that are H bonded to the chain are also H
approximated by bonded to the rest of the water network. Kjellander and
Florin [36] argued that the solubility of PEO in water is due
to the oxygen-oxygen spacing along the chain providing a
x(T) good structural fit to the water H-bonding network. We as-
sume that application of pressure or tension introduces a glo-

(V=Vip)

O_I

2
] : (23

F ¢
?NN In ¢+(1—¢)In(1—¢>)+

£(T) bal geometric constraint that both suppresses the fraction of
1+ —”¢>(1—¢), (200  water-water H bonds and frustrates the good structural fit
2 between PEO and the water network. This leads to a reduc-

_ . ) . tion of the effective number of bonding sitésForV+#V,g,
which is exactly of the Flory-Huggins form with an effective ;o sssume that the effective number of bonding sites is

X parameter pon'_taining the bare poor solvgmlus a good given by an expression similar t@3),
solvent contribution coming from the fraction of H bonds

formed along the chain. 2
A simple physical interpretation of the effect of H bond- izexp‘ _[(V_VHB)} ] (24)

ing solvent molecules onto the chain is found by retaining N o '

the dominant contributions to the free energynmN and

L(T). To lowest order im/N, Eq. (11) is approximated by

(with f=N)

—L(T)

whereo#o’ in general.
We find the dependence 6fN on pressure by using the
equation of state of the system

In¢+(1—¢)|n(1—¢)+x¢(1—¢)—%¢. V=Vyg~—PKiVyp, (25)

(21)  where Ky=—(1N)(dV/dP) is the system’s isothermal
compressibility. Using24) and (25), we find

f_
N—GX —

which we assume is well approximated by

—| T
Zl&

To lowest order inZ(T), Eq. (12) is given by
PK:Vig

o

2
] , (26)

Z|3

~L(T)(1—¢). (22

Thus the free energy of the system is simply given by the 5

usual Flory-Huggins expression minkgT per bound sol- N=1-P (27)
vent molecule and the fraction of attached solvent assumes

the form of a simple Langmuir isotherm as a function of where
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(28 __Finally, we are able to find the pressure dependence of
m/N and the free energy of mixing by using E@§1), (12),
for pressures reaching5 kbar(i.e., pressure scale of experi- and(27). The fraction of H bonds on the polymer is given by

KtVig)? ments[18]).
Sl

m_1-L¢yP?—(1-LoyPD2-4L%(1- $)(1— yP?)

= ) (29

Because the experimentat P phase diagram was measured lar weight can be accounted for solely by the translational
at dilute polymer concentrations, we may expand the freentropy of the chaingwhich is the onlyN-dependent quan-
energy in smalkp as in Eq.(16). Keeping only the contribu- tity in the theory, we fit the critical temperatur@& (both
tions to second order ig arising from H bonding, we find LCST and UCST versus number of monomeks with

that the mixing free energy is given by

F_¢ (To)—L(Te) 14209 1,1 (32
TN E+H(L-@)IN(1=d) + Xer(T,P) S(1- ), A e c 2 |7 27N
(30)
The results are shown in Fig. 1. The open squares are experi-
where mental data taken from Saedt al.[13] and the solid squares

£(T)(1— yP?) are from Baeet al. [14]. In the region ofT,.~400 K, the
AT ) Saekiet al. and Baeet al. data appear to disagree. If we
2 ignore the three Saelkit al. points in this neighborhood, we
(31 get a rather good fit and the collapse of the closed loops at

. . N=48.9 andT.=478 K. Although we are able to achieve
We will now show that by using Eq$30) and(31) we are .reasonable fits of the Saekt al. data alone, they are not

able to explain the experimental phase diagrams of PEO 'Hearly as good as presented in Fig. 1. We find thand T,

water. take the values=5.38 andT,,=447.6 K, which correspond
to A&y~—8KkT,0om- We expect the order of magnitude of
IV. COMPARISON OF THEORY TO EXPERIMENTAL A&, to be that of the water-water H borgg [33]. Indeed, in
PHASE DIAGRAMS their model of pure water, Pooleetal. [27] find

We investigate whether our simple model is capable of
explaining the experimentdl-P-¢ phase diagram of PEO 100
in water as a function of molecular weight. We begin by i
fitting the measured critical temperatufg [both LCST and
upper critical solution temperatuf®CST)] versus molecu-
lar weight with four parameterd, B, r, and T,, with the
constraint that and T, take values that are consistent with
known H-bonding energies and melting temperatures. With
one additional parametey, we fit the experimental cloud -\
point pressure versus temperature phase diagram. We show g
that the resulting theoretical-¢, P-M,,, and P-¢ phase =
diagrams are in reasonable agreement with that of experi-
ment. 1000

We begin with the closed-loop-¢ phase diagram. The
existence of a closed-loop miscibility gap has a simple physi-
cal explanatior37]. At ambient temperatures, H bonding of
a solvent onto a polymer leads to a mixed phase. Increasing
temperature near the boiling point of water where H bonds
begin to break exposes the polymer to poor solvent and gives
rise to a two-phase region. Increasing temperature further  1ot———
favors entropy of mixing and the system returns to a mixed T, [K]
phase.

For PEO in water, these close loops shrink with decreas- F|G. 1. Critical temperatur@&, vs the number of monomer units
ing molecular weight down to a point afl ,~2140 (i.e., N on a PEO chain. Open squares are the experimental data of Saeki
N~48.6 [13], where the polymer is soluble at all tempera- et al. [13] and solid squares are the data of Bzteal. [14]. The
tures and concentrations. To see if this sensitivity to molecusolid line is the fitted theoretical curve using Eg§2).

Xer(T,P)=x(T)— L(T)(1— yP?)| 1+

100
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T [K]
T [K]

450~ .

I T S T S N S S SR SR AT SOy S S | L L n 1 L ) L |

A 0.2 0.3 0.4 0 0.2 0.4
Weight Fraction of PEO Weight Fraction of PEOQ

0 0, 0.6

FIG. 2. Temperature-weight fraction spinodal, calculated from  FIG. 3. Temperature-weight fraction coexistence curve for
Eqg. (33) for M,,=3350, 8000, and 15 000 PEO, which correspondp ,=3350, 8000, and 15 000 PEO. Circles, squares, and triangles
to the inner, middle, and outer curves, respectively. are the experimental cloud points of Beeal. [14] for M,,=3.35,

8.0, and 15.610°, respectively. Solid lines are the corresponding
€5~ —8.8&T,,om- The remaining parameters that determinecalculated coexistence curves.
x areA=2.884 57 and3=0.003 62.

Using the parameters obtained from the fit, we compar
the theoretical temperature weight fraction phase diagrams
that of Baeet al.[14]. In Fig. 2 we first show the calculated
spinodals(i.e., #F/3¢*=0) given by

%ally reduces the LCST to room temperaturdat-4.3 kbar
t(%ee Fig. 4. Furthermore, they find that ditxed concentra-
tion the cloud point pressur@vith T=295.65 K) increases
with decreasindN as 1A/N (see Fig. 5. They attributed this
N dependence to the critical point behavior of Flory-Huggins

2l x(M—-L(M)| 1 £T) _1 ! 33 theory where
X(M=LM| 1+ —— _N_¢>+1T (33
and we obtain the weight fraction of polymes, from ¢ 1 1
using the relation Xc=§+ \/_N (35
4
W~L, (34
18(1—¢)+44¢ —

where the molecular weight of a monomer is 44 and that of
water is 18. In Fig. 3 we show the theoretical coexistence
curve found by equating the chemical potential and osmotic
pressure in the two phasefi.e., u(éd')=w(¢") and
I(¢")=I1(¢") [31]] along with the corresponding experi-
mental cloud points of Baet al.[14]. We note that the only
input from the fitting are the approximate values of the
LCST and the UCST for a giveM,,; thus a test of the
theory is how well the resulting theoretical phase diagram
compares with that of experiment. The experimental coexist-
ence curves extend beyond that of the theory into higher
polymer concentrations, indicating that at higher concentra-
tions PEO is in a poorer solvent than our lowest-order free
energy Eq.(30) predicts. Within the context of our model,
this may be remedied by retaining higher-order terms in the
expansions shown in E¢16). Nevertheless, the agreement
between theory and experiment is reasongB8&. P [kbar]
Starting at ambient pressure, the LCST of dilute PEO with
M,,=270 000 in water is 373 K. Cook, King, and Peiffer  FIG. 4. Spinodal pressure vs temperature, calculated from Eq.
[18] found that application of pressure increased the LCST36) for M,,=270 000 PEO at$=0.002 77. Solid squares are the
slightly up to 2 kbar and increasing pressure further dramatiexperimental cloud point data of Cook, King, and Peiff&8].

T [K]




55 SOLUTION BEHAVIOR OF POLYETHYLENE OXIDE N . .. 583

10 .

P [kbar]
P [kbar]

I . n . . ] . ; . L |
15

| vl AR
35
104 108 10¢ 0

100 — I‘”;000 - 5 10

M, [g/mol] Concentration of PEO ¢ [g/dl]
FIG. 5. Spinodal pressure vs molecular weight of PEO, calcu- FIG. 6. Spinodal pressur@ashed curveand binodal pressure

lated from Eq.(36) at T=295.65 K and¢$=0.0554. Solid squares (solid curv@ vs concentration of polymer calculated for

are the experimental cloud point data of Cook, King, and Peifferv,,=252 000 PEO aT=298.15 K. Solid squares are experimental

[18]. cloud point data of Sun and King4].

However, the concentration was fixed in the experimentheory may be due to our truncatidgN to second order in

while the validity of Eq.(35) requires one to remain at the P, which is a poor approximation at high pressures.

critical con;:/g]tration ¢., which varies with molecular

weight as 14/N.

Within the context of our simple model, thd depen- V. PREDICTIONS AND CONCLUSIONS

dence of the cloud point pressure is due to the translational We now turn to predictions of the theory. First, we note

entropy of the chains. Froit80), we find the spinodal pres- that our model predicts reentrant behavior in (v phase

sure for dilute solution of polymer is given by diagram. In Fig. 4, we see that below room temperature, the
LCST is lowered withdecreasingpressure. At these tem-

1 peratures and at low pressure, our model predicts fully
pP= \/ [E(T)Jrl_ \/1+2X(T)— i+ 1 ” dressedwith waten PEO chains whose solvent quality be-
y£L(T) N¢ 1—¢/| comes poorer as one lowers temperature, thereby reducing

(36)  the pressures required to initiate phase separation. The reduc-
tion in solvent quality at lower temperatures may be due to
For simplicity, we use Eq(36) to investigate how well (i) van der Waals attraction between them(ioy the estab-
our theory compares to the experimental results of Cooklishment of the water tetrahedral network with less liable H
King, and Peiffe18]. We sety=0.003 bar?, which gives bonds, which frustrates the fit between PEO and the water
the best fit of the experiment®-T phase diagram shown in network. Reentrant behavior has indeed been observed re-
Fig. 4 for M, =270 000 atc=1 g/dl of PEO in wateri.e., cently in the P-T phase diagram of pofi-vinyl-2-
¢~0.003 in our case We find that the theoretical curve pyrrolidone in water[28].
qualitatively captures the dramatic drop in the LCST as As clearly shown in Eq(36), our theory predicts a lower
P—4-5 kbar and shows good semiquantitative agreemertritical solution pressuréLCSP P-¢ phase diagram that
with the experimental curve. However, the slow rise in theclosely resembles typical LCST-¢ phase diagrams pre-
LCST from ambient pressure up to 2 kbar is not captured. Irdicted by Flory-Huggins theor}31]. In Fig. 6, we show a
typical polymer systems, the LCST gradually increases wittplot of the spinodal and binodal pressure versus concentra-
pressure, an effect that has been theoretically predicted aritbn with the data from a preliminary experimental study of
experimentally observe89-43. In this work, we have ne- Sun and King 44]. Our coexistence curvg.e., binodal ap-
glected these effects and focused on the dominant effegears to depend weakly on concentration in agreement with
pressure has on hydrogen bonding between PEO and waterxperiment[18,44. However, more experimental data are
In Fig. 5, we plot the spinodal pressure versus moleculaneeded to determine if thB-¢ coexistence curve has the
weight of PEO chains aT=295.65 K and concentration form of a LCSP curve as predicted in E6).
¢=20 g/dI(i.e., ~0.06). Although the fit is reasonable, the =~ Throughout this work, we have concentrated on the re-
experimental cloud point varies from4 to ~7.5 kbar, while  gime wherem/N¢<1 (i.e., the volume fraction of H-bonded
the theoretical spinodal varies fromy4.3 to ~6.5 kbar  solvents is smalland Eq.(30) is valid. We briefly discuss
across the fullM,, range. The fact that the experimental one consequence of complex formation between solvent and
cloud point appears to be more sensitiveMg, than that of  polymer displayed in the exact expression of our free energy
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H bonded to the chain. This simple theory is capable of
semiquantitatively explaining the observéeP-¢ phase be-
havior of PEO in water.

Despite the relative successes of this simple model in cap-
turing the phase behavior of PEO in water, we have ne-
glected effects that may be important in understanding the
] solution behavior of hydrosoluble polymers and PEO in par-
. ticular.

(i) Cooperativity PEO has been reported to partially re-
tain in agueous solution the, helix structure observed in
pure crystalline fornf45]. The helical structure observed in
aqueous solution is attributed to H bonding between water
and PEO, which is reported to display cooperativity similar
to the helix-coil transition in polypeptidg5,46. We note
. that the lowest order it (T) approximation tam/N shown
] in Eqg. (22) has exactly the same temperature dependence as
the fraction of helical segment®T) in a helix-coil model
with no cooperativity[46]. Incorporating cooperativity into

o 02 PR 08 ! our model is planned to be the subject of future investiga-
tions.
FIG. 7. Theoretical osmotic modul§l/d¢ of PEO in water in (ii) Saturation of the H bondin a dense monomer envi-
units ofkgT/a®, wherea is the length of a monomer versus volume fONMENt, We expect monomer-monomer contacts to suppress
fraction of polymerd, calculated foN=1000 atT=275 K. H bonding between a solvent and polymer, thereby leading

to a concentration-dependepparameter that increases with
the volume fraction of polymef20]. This may account for

shown in Egs.(11) and (12) that does not appear in the di hiah . b the ob
standard Flory-Huggins theory. At ambient pressures anH1e Iscrepancy at higher concentrations between the ob-
erved and experimentdl-¢ coexistence curves shown in

low temperatures, our free energy develops a sharp minimurm: i .
as a function of concentration &t-0.5. One way of observ- 9. 3. Measurements .Of the g_ffe_ctly@arametgr of PEQ in

ing this would be a measurement of the osmotic moduludVater from vapor liquid equilibrium data .|nd.|cate that the
g, If a system is well described by Flory-Huggins solvent quality indeed becomes poorer with increasing vol-

theory(as ours is at high temperatuyethe osmotic modulus ume fraction of the polymerl4,16. We leave this question
is given by to a future paper.
(i) Crystallization of a polymer As mentioned above,

PEO crystallizes in water below70 °C in the weight frac-
£~i+i—(1+2 ) 37) tion range 0.5-1[7,16]. The specific monomer-monomer
dp N 1—¢ XPJ- and monomer-water interactions that lead to crystallization

may manifest themselves in more dilute agueous solutions.
They may account for the reported aggregation of PEO in
dilute solutions below~70 °C and explain the vapor-liquid
equilibrium data mentioned ifii) above. In the Appendix,
we show that our model does not explain aggregate forma-
tion.

As a function of concentratiorgll/d¢ is either monotoni-
cally increasing(y<0.5 or exhibits aminimumat ¢=1
—1/\/2x (x>0.5) and diverges as the amount of solvent ap-
proaches zerGp—1). In Fig. 7, we plot the osmotic modulus
versus concentration calculated using Edl) at T=275 K.
In contrast to Eq(37), the osmotic modulus develops a local
maximumat ¢~0.5. At such low temperatures, our system ACKNOWLEDGMENTS
begins to resemble a polymer melt of fully dressed chains ) ) ) )
with the amount ofree solvenpproaching a small number e appreciate conversations with G. Fredrickson, T. Sun,
as ¢—0.5. As we lower the temperature further, this maxi-H- E. King, Jr., and J. C. Selser. We especially appreciate T.
mum becomes a singularity -0, where the free solvent Sun and H. E. King, Jr. for allowing us to present unpub-
approaches zZero as_)05’ similar to the Singu'arity encoun- lished data shown in F|g 6. This work has been Supported by
tered in the standard Flory-Huggins casedas1. We note NSF Grant Nos. DMR-8-442490-21795 af®RL) DMR
that this maximum may be obscured by PEO crystallizatior?1-23048.
that occurs at weight fractions0.5.

In conclusion, we have_shown that the solution theory of APPENDIX: AGGREGATE FORMATION
hydrosoluble polymers introduced by Matsuyama and
Tanaka[1], where a polymer and solvent form association We now show that the model of hydrosoluble polymers
complexes, is well approximated by a simpler theory inrepresented by the free energy shown in E44) and (12
which fluctuations in the number of associating solvents isloes not explain aggregate formation. More specifically,
neglected. In the limit of small volume fraction of associatedthere is no formal connection between our model and that of
solvents, the resulting free energy has the standard Floryde Genne$19]. To see this, we expand the exact free energy
Huggins form with a good solvent contribution to the effec-[Eq. (11)] in (m/N) ¢. We find contributions to the free en-
tive y parameter, which comes from the fraction of solventsergy that favor mixing between a polymer and solvent to all
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orders in M/N)¢. Therefore, we expect all virial coeffi-
cients above second order to pesitive More explicitly, we
see from Eq.(14) that 0<£<1; thus, from Eqs(18) and
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(19), we see thatv>0 andu>0 for all T. With the fitting
parameters that we obtain for PEO in waiger;0 for T rang-
ing from 0 °C to 70 °C.
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